Project Description

An environmental cost-effective activation treatment for biological failures in WWTP

Around 80% from wastewater treatment plants in the EU have secondary treatment processes using activated sludge. Municipal sewage plants rely on the efficient and continuous processing of effluents to avoid the release of untreated wastewater and subsequent environmental and public health threats. Uncontrolled spills containing harmful substances can damage the biological units, since an increase in the toxic load of urban wastewater reduces the cleaning capacity of the bacterial culture. Such harmful increases come from uncontrolled discharges with excess toxic loads and can be seasonal. Consequently, untreated water can be released, contributing to the loss of biological diversity and degradation of water resources.

When a treatment plant operator detects that the organic or nutrient removal performance is decreasing, most of the biomass has already been damaged. The usual procedure to resume normal activity consists of increasing the air supply to the bioreactor. Considering that aeration systems can represent around 50-70% of the total energy consumption of a WWTP, an increment in energy requirements in the biological process will lead to a considerable increase in the overall energy consumption at WWTPs.

In this context, the general objective of BACTIWATER is to demonstrate that the proposed tools can reduce the environmental impact of failures and malfunctions at biological units after spills.
The whole project, including the experimental phase, will take place in Valencia (Spain).

BACTIWATER is an EU financed project in the framework of the Life Program, which is the EU’s financial instrument supporting environmental and nature conservation projects throughout the EU.